Excitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures.
نویسندگان
چکیده
In this study we have found that L-glutamic acid, as well as being taken up by a Na+-dependent mechanism, will stimulate the uptake of 22Na+ by primary astrocyte cultures from rat brain in the presence of ouabain. By simultaneously measuring the uptake of 22Na+ and L-3H-glutamate a stoichiometry of 2-3 Na+ per glutamate was measured, implying electrogenic uptake. Increasing the medium K+ concentration to depolarize the cells inhibited L-3H-glutamate uptake, while calculations of the energetics of the observed L-3H-glutamate accumulation also supported an electrogenic mechanism of at least 2 Na+:1 glutamate. In contrast, kinetic analysis of the Na+ dependence of L-3H-glutamate uptake indicated a stoichiometry of Na+ to glutamate of 1:1, but further analysis showed that the stoichiometry cannot be resolved by purely kinetic studies. Studies with glutamate analogs, however, showed that kainic acid was a very effective stimulant of 22Na+ uptake, but 3H-kainic acid showed no Na+ -dependent uptake. Furthermore, while L-3H-glutamate uptake was very sensitive to lowered temperatures, glutamate-stimulated 22Na+ uptake was relatively insensitive. These results indicate that glutamate-stimulated uptake of 22Na+ in primary astrocytes cultures cannot be explained solely by cotransport of Na+ with glutamate, and they suggest that direct kainic acid-type receptor induced stimulation of Na+ uptake also occurs. Since both receptor and uptake effects involve transport of Na+, accurate measurements of the Na+ :glutamate stoichiometry for uptake can only be done using completely specific inhibitors of these 2 systems.
منابع مشابه
Sodium uptake across basolateral membrane of rat distal colon. Evidence for Na-H exchange and Na-anion cotransport.
This study sought to characterize the mechanism of Na transport across basolateral membrane vesicles of rat distal colon. Both an outward proton gradient and an inward bicarbonate gradient stimulated 22Na uptake. Proton gradient-stimulated 22Na uptake was activated severalfold by the additional presence of an inward bicarbonate gradient, and bicarbonate gradient-stimulated 22Na uptake was signi...
متن کاملDevelopment of glutamate-stimulated phosphatidylinositol metabolism in primary neuronal and astrocyte cultures.
It was the purpose of the present study to evaluate glutamate-stimulated phosphatidylinositol metabolism in primary mixed astrocyte/neuron and neuron-enriched cortical cultures through different stages of development in vitro. Glutamate (0-200 microM) stimulated inositol phosphate accumulation in a concentration-dependent fashion at 6, 13 and 20 days in vitro. Pure astrocyte cultures exhibited ...
متن کاملP2X7 receptor-mediated release of excitatory amino acids from astrocytes.
Astrocyte glutamate release can modulate synaptic activity and participate in brain intercellular signaling. P2X7 receptors form large ion channels when activated by ATP or other ligands. Here we show that P2X7 receptors provide a route for excitatory amino acid release from astrocytes. Studies were performed using murine cortical astrocyte cultures. ATP produced an inward current in patch-clam...
متن کاملIncreased bcl-2 Protein Levels in Rat Primary Astrocyte Culture Following Chronic Lithium Treatment
Background: B cell CLL/lymphoma 2 protein, bcl-2, is an important anti-apoptotic factor that has been implicated in lithium’s neuroprotective effect. However, most studies have focused on assessing the effects of lithium in neurons, ignoring examination of bcl-2 in astrocytes, which also influence neuronal survival and are affected in bipolar disorder. The aim of this study was to evaluate whet...
متن کاملNeuronal influences are necessary to produce mitochondrial co-localization with glutamate transporters in astrocytes
Recent evidence suggests that the predominant astrocyte glutamate transporter, GLT-1/ Excitatory Amino Acid Transporter 2 (EAAT2) is associated with mitochondria. We used primary cultures of mouse astrocytes to assess co-localization of GLT-1 with mitochondria, and tested whether the interaction was dependent on neurons, actin polymerization or the kinesin adaptor, TRAK2. Mouse primary astrocyt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 9 4 شماره
صفحات -
تاریخ انتشار 1989